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a b s t r a c t

This paper describes an experimental investigation of the statistical properties of

turbulent velocity fluctuations in an axisymmetric jet. The focus is on those properties

that are relevant to the prediction of noise. Measurements are performed using two

single hot-wire anemometers as well as a two-component anemometer. Two-point

of the axial velocity fluctuations are presented. Several reference locations in the jet are

used including points on the jet lip and centerline. The scales of the turbulence and

the convection velocity are determined, both in an overall sense as well as a function

of frequency. The relationship between the second and fourth order correlations is

developed and compared with the experimental data. The implications of the use

of dimensional as well as non-dimensional correlations are considered. Finally, a

comparison is made between the length scales deduced from the flow measurements

and a RANS CFD calculation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Jet noise prediction methods based on either the Lighthill or Lilley–Goldstein acoustic analogy, or alternative
approaches, depend on models of the statistical properties of the turbulence. These can be expressed either in terms of the
cross correlation of the turbulent velocity fluctuations or its Fourier transform, the cross spectral density. There have only
been a limited number of measurements of these properties in jets in the past: often only examining limited regions of the
jet. These include the measurements by Davies et al. [1], Bradshaw et al. [2], Davies [3], and Chu [4]. Michalke and Fuchs [5]
made both hot-wire and inflow pressure measurements. More recently, Harper-Bourne [6,7] revisited his earlier hot-wire
anemometer measurements (1973) and provided additional cross correlation and cross coherence measurements as well as
frequency-dependent convection velocities and length scales. These measurements, in particular those by Davies et al. [1]
and Harper-Bourne [7], have been used to guide noise source modeling in jets. Noise predictions based on these models,
such as those by Tam and Auriault [8] and Morris and Boluriaan [9], give good agreement with measurements, even though
the flow measurements were made in much lower speed jets than those for which noise predictions were made. Recently,
various optical velocity measurement techniques have been developed and used to determine the statistical properties
of the jet turbulence. Bridges and Wernet [10], used particle image velocimetry (PIV) to measure space–time correlations
in cold and heated jets with Mach numbers 0.5 and 0.9. Wernet [11] describes recent improvements in this technique with
sampling rates up to 25 kHz. Kerhervé et al. [12] made two-point laser Doppler velocimeter (LDV) measurements in a cold
All rights reserved.
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Mach 1.2 jet. Since the LDV does not provide continuous time histories of the velocity, a ‘‘fuzzy-slotting’’ technique was
used to construct the auto and cross correlations and the associated spectra. Kerhervé et al. [13] used the same two-point
LDV technique to examine the frequency dependence of the turbulence length and time scales. Kerhervé and Fitzpatrick
[14] extended these measurements and provided models for the variation of convection velocity and length scales with
frequency. Chatellier and Fitzpatrick [15] used a combination of PIV and LDV to derive temporal correlation information
from the low repetition rate PIV measurements. It should be noted that in these measurements the definition of the length
scale was the traditional integral length scale used in turbulence studies and differs from the length scale definition used
here and by Harper-Bourne [6,7], which is considered, by the present authors, to be more relevant to noise source
modelling. Ukeiley et al. [16] used PIV to determine spatial correlations in a transonic jet. Correlations were determined
with two orientations: one in the x2r plane and the other in the x2y plane. A dual PIV system was used by Fleury et al. [17]
to make space–time correlations in unheated jets with Mach numbers 0.6 and 0.9. The temporal resolution of the
correlations was restricted to fixed time separations. However, estimates of time as well as length scales were provided.
Doty and McLaughlin [18] performed optical deflectometry (OD) measurements, a variant of schlieren visualization, in
subsonic and supersonic jets. This technique provides continuous time histories of the density gradient fluctuations and
was used to generate space–time correlations. Each of these techniques comes with experimental challenges; the need for
seeding, the complexity of the data analysis, and the cost of the laser and optics. On the other hand the hot-wire
anemometer is simple and cheap and, with careful use, can provide continuous time histories of velocity component
fluctuations at multiple points in the jet flow. For the dimensions of the cross-wire probe used in the present experiments,
the spatial resolution is comparable or better relative to PIV for a typical 12 in square field of view. PIV resolution improves
if the area of the field of view is reduced. For boundary layer measurements, a single wire does better because the sensor
diameter determines the spatial resolution (assuming 2-D flow). The biggest advantage of the hot-wire in measurement of
the correlations is that it provides time-accurate data with high frequency response. This is not quite attainable yet with
the other techniques. The drawbacks with the hot-wire anemometer are the possibility of probe interference effects,
though efforts have been made to minimize them, and its restriction to low speed flows: the present measurements being
made for a jet Mach number of 0.25. In addition, though it possesses high temporal resolution, the hot-wire anemometer
only provides velocities at a single point.

The present paper aims to provide a more complete picture of the relevant turbulent statistics. This includes a wider
range of reference points in the jet, the presentation of both cross spectra as well as cross correlations (including scales
derived from these data), and the inclusion of both second as well as fourth order statistics. In addition, the validity of the
quasi-normal hypothesis is examined. Finally, comparisons are made with a RANS prediction of the jet flow, both for the
mean flow as well as the length scales, to determine how well such a simulation can provide estimates of scales for noise
source modeling. The next section describes the experimental facility and methodology and the data analysis techniques.
Key results are provided in Section 3. Finally, comparisons are made with results from a RANS simulation in Section 4
before providing a summary of the work in Section 5.

2. Experimental facility and data analysis

The data were obtained in an open jet facility at NASA Glenn Research Center. Compressed air supplied by a centrifugal
blower entered through one end of a 0.762 m diameter cylindrical plenum chamber fitted with flow-conditioning units. The
air discharged through a round, convergent nozzle at the other end of the chamber into the quiescent ambient of the test
chamber. The nozzle had an exit diameter of 5.08 cm and all data were acquired for a nominal jet velocity of 87 m/s. The
nozzle contours are shown in Fig. 1. The overall contraction ratio is 225. A trip ring was used to make the exit boundary
layer turbulent. The trip ring was placed at x ¼ �4:45 cm (x=Dj ¼ �0:876) upstream of the jet exit where the nozzle interior
radius was 1.418 cm (r=Dj ¼ 0:558). The ring was 0.318 cm wide and the downstream end had a thickness of 0.043 cm.
A photograph of the nozzle, with the hot-wire probes placed near the exit, is shown in Fig. 2.

All data were acquired in ‘cold’ flow. That is, the jet was unheated and the total temperature everywhere was approximately
the same as the ambient temperature. Two single miniature hot-film probes (TSI 1260A-10), together with a constant
temperature anemometer (TSI IFA100), were used in the experiment. The active length of the single hot wire probes was
0.025 cm. The anemometer electronics were tuned to provide frequency response up to approximately 25 kHz. One probe was
mounted on a 3-axis probe traversing mechanism operated under computer control. The second probe was mounted on a
2-axis manual traversing mechanism. The second probe was inserted in the flow at an angle and probe vibration and yield
under the flow were kept to a minimum. For each run, the two probes were brought to within approximately 0.13 cm at the
reference location. The computer controlled probe was then moved at different axial and radial locations for data acquisition.
Limited measurements were also performed with a single X-wire probe (TSI 1248A-10) focusing on autocorrelations as
described in Section 3.3. The active length of each of the cross hot-wire probes was also 0.025 cm.

2.1. Definitions

The results described in the following sections provide both second and fourth order two-point correlations of the axial
velocity fluctuations in a jet. This section provides definitions of these correlations and the notation to be used in this paper.
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Fig. 2. Photograph of nozzle with two hot-wire probes placed near the exit. The trip ring inside the nozzle is visible.

Fig. 1. Nozzle contours.
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Though axial velocity fluctuations constitute the majority of the measurements, the notation given here is generally
applicable. The second order two-point correlation is defined by

Rijðx;g; tÞ ¼ uiðx; tÞujðxþ g; t þ tÞ; (1)

where an overbar denotes time average, uiðx; tÞ is the velocity fluctuation in the i-th direction, and g and t are the spatial
separation and time delay, respectively. The correlation coefficient is obtained by dividing the cross correlation functions
by the root mean square values of the velocity fluctuations at the two locations.

There are two choices for the fourth order cross correlation. These will be denoted by

Rijklðx;g; tÞ ¼ uiujðx; tÞukulðxþ g; t þ tÞ; (2)

and

Cijklðx;g; tÞ ¼ ðuiuj � uiuj Þðx; tÞðukul � ukul Þðxþ g; t þ tÞ: (3)

The former correlation, Eq. (2), would be applicable to the equivalent source terms in Lilley’s equation, as used, for example,
by Khavaran and Bridges [19]. The latter cross correlation, Eq. (3), is relevant to the source description in Goldstein’s [20]
acoustic analogy, used recently by Karabasov et al. [21]. The corresponding cross correlation coefficients can be defined in a
similar manner to the second order correlations. That is, in the first case, Eq. (2), the cross correlation coefficient is given by

rijklðx;g; tÞ ¼
Rijklðx;g; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuiuj Þ
2
ðxÞðukul Þ

2
ðxþ gÞ

q : (4)
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In the second case, Eq. (3), it is given by

cijklðx;g; tÞ ¼
Cijklðx;g; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðuiuj � uiuj Þ
2
ðxÞðukul � ukul Þ

2
ðxþ gÞ

q : (5)

Alternatively, the correlation coefficient in the former case could be defined by normalizing with Rijklðx;0;0Þ.
At zero separation and time delay, and for i ¼ j ¼ k ¼ l ¼ a, Eq. (4) reduces to

raaaaðx;0;0Þ ¼ u4
a ðxÞ=½u

2
a ðxÞ�

2; (6)

where no summation is to be applied to a. This is the flatness factor for the ua velocity fluctuation, which will be denoted
by TaðxÞ. However, caaaaðx;0;0Þ reduces to unity.

From Eqs. (2) and (3) it is readily shown that

Cijklðx;g; tÞ ¼ Rijklðx;g; tÞ � uiuj ðxÞukul ðxþ gÞ: (7)

Also, at any location

ðu2
a � u2

a Þ
2
¼ ðu2

a Þ
2
ðTa � 1Þ: (8)

So that, from Eqs. (5) and (6),

caaaaðx;g; tÞ ¼
raaaaðx;g; tÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½TaðxÞ � 1�½Taðxþ gÞ � 1�
p : (9)

In noise source modeling, the quasi-normal hypothesis [22] is often used to relate the fourth and second order
correlations. In the general case, the hypothesis is given by

Rijkl ¼ RikRjl þ RilRjk þ RijRkl: (10)

Clearly this gives TaðxÞ ¼ 3. However, Lighthill [23] showed that, if the mean square turbulent velocity fluctuations and the
flatness factor are independent of the separation distance, then

caaaaðx;g; tÞ ¼ r2
aaðx;g; tÞ: (11)

This holds for all values of flatness factor (as long as the mean square velocity fluctuations and flatness factor are
independent of g). When the quasi-normal hypothesis is not applied, Eqs. (9) and (11) give

raaaa ¼ 1þ ðTaðxÞ � 1Þr2
aa: (12)

Thus, unless the quasi-normal hypothesis is used, the source term correlations require knowledge of the flatness factor. It
should also be noted that the analysis given by Lighthill [23] is for correlations between velocity fluctuations in the same
direction. However, it appears that this result can be extended, though the resulting expressions are more complicated.

The cross spectral densities are given by the Fourier transform of the cross correlations with respect to time delay.
That is, for example,

Sijklðx;g;oÞ ¼
1

2p

Z 1
�1

Cijklðx;g; tÞe�iot dt; (13)

with

Cijklðx;g; tÞ ¼
Z 1
�1

Sijklðx;g;oÞeiot do; (14)

where o is the radian frequency. In addition, a complex cross coherence can be defined by

sijklðx;g;oÞ ¼
Sijklðx;g;oÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
ijklðx;oÞS

2
ijklðxþ g;oÞ

q ; (15)

where the terms in the numerator represent the auto-spectra at x and xþ g. The magnitude of sijklðx;g;oÞ is the square root
of the coherence. Similar expressions can be derived for the second order cross spectral density. Similar definitions of the
complex cross coherence were given by Kerhervé et al. [13].

2.2. Data analysis

The hot-wire signals were sampled at 35 kHz and, for the correlation results presented in this paper, 10 s of data were
acquired at each point. The signals were first converted to velocity using a calibration obtained in the core of the jet and a
fourth-order polynomial fit to the velocity–voltage relationship. The time series for the velocity were divided into 50
percent overlapping segments. Typically, each segment consisted of 1024 samples, though other longer sample lengths
gave very similar results. This gave 681 overlapping segments. A Hanning window was applied to each segment, its fast
Fourier transform was taken, and the transforms were averaged. The auto and cross spectra were then obtained by taking
the product of the averaged transforms with their complex conjugates. An inverse fast Fourier transform was then used to
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obtain the auto and cross correlations and their coefficients. The amplitude and phase of the complex cross coherence was
also calculated.

3. Experimental results

3.1. Single wire measurements

The mean velocity profiles were measured with the probe mounted on the 3-axis traversing mechanism. Fig. 3 shows
boundary layer profiles measured near the exit of the nozzle. Integration of the mean velocity data provided the boundary
layer characteristics. These data are presented in Table 1 compared to the properties for the untripped case. Fig. 4 shows the
centerline variations of the axial mean velocity and turbulence intensity. It can be seen that the potential core length is
approximately five jet diameters and the peak turbulence intensity reaches approximately 14 percent at approximately 9
diameters downstream of the jet exit. Note that the velocity relaxes to a slightly higher value just downstream of the exit.
This is because the flow-lines are not yet parallel at the exit and the nozzle walls terminate with approximately a 0:153

convergence angle. The jet exit velocity is taken to be the maximum value, just downstream of the physical jet exit. It is also
noted, with radial surveys at x=Dj ¼ 12, that the geometric axis of the nozzle and the flow axis are aligned within 0:53.

Radial surveys of the axial velocity were made at axial locations between the jet exit and 10 jet diameters. Fig. 5 shows
the mean axial velocity at several downstream locations. A similarity coordinate is used based on the axial mean half
velocity point and the local vorticity thickness. That is,

Z ¼ ðr � r0:5Þ=do; (16)

with

do ¼ Uj=maxjqu=qrj: (17)
Fig. 3. Boundary layer profiles, measured about 0.05 cm downstream from the nozzle lip.

Table 1

Exit boundary layer displacement thickness d1, momentum thickness d2, shape factor H12, and peak turbulence intensity for the tripped and untripped

cases.

Untripped Tripped

d1 (cm) 0.0076 0.0135

d2 (cm) 0.0033 0.0097

H12 ¼ d1=d2 2.33 1.39

Peak turbulence intensity 0.067 0.075
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Fig. 4. Centerline variations of axial mean velocity and turbulence intensity.
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Even though the final two axial locations are downstream of the end of the potential core, the use of the jet exit velocity in
the definition of the vorticity thickness, rather than the jet centerline velocity, provides an improved collapse of the data.
This reflects the persistence of the similarity properties of the annular jet mixing region downstream of the end of the jet
potential core. There is some deviation close to the jet centerline at the last two axial locations, which is to be expected.
The corresponding axial turbulence intensities are shown in Fig. 6. It is clear that the jet turbulence behaves in a self-
similar manner over this entire region.
3.2. Two wire measurements

In this section, initially, results will be given in some detail for the region near the end of the potential core: both on the
jet lip line and on the jet centerline. It can be seen from Fig. 4 that, at x=Dj ¼ 5 the turbulence intensity on the jet centerline
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Radial distance, η=(r-r0.5)/δω
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has not yet reached its maximum value. However, as shown in Fig. 6, the turbulence intensity on the jet lip line is almost
constant at its maximum value.
3.2.1. Lip line measurements

In the results in this section, the second and fourth order correlations and correlation coefficients are defined by Eqs. (1),
(3) and (5). Figs. 7 and 8 show the second and fourth order axial cross correlation coefficients. Note that the dependence of
the correlations on x is implied, and the arguments refer to ðx;Z; z; tÞ, where the separation distance g ¼ ðx;Z; zÞ. The fourth
order cross correlation decays more rapidly, both in separation distance and time delay. It should also be noted that, for
larger separations, the second order cross correlations show noticeable negative loops. This is consistent with a view of the
turbulence that it consists of two components: a first that is relatively poorly correlated, both spatially and temporally, and
a second that is more coherent and has a wavelike character. If the points of maximum cross correlation are determined as
a function of separation distance, the overall convection velocity of the turbulence can be estimated. This is shown in Fig. 9.
The convection speed for the velocity fluctuations is given by uc=Uj ¼ 0:623 and that for the square of the velocity
fluctuations is uc=Uj ¼ 0:655. It should be noted that the resolution for the time delay is given by Dt ¼ 0:0489. Also, the
linear fits to the measurements do not pass through the origin. This indicates that the initial probe separation, which was
set by eye, was not exact. The estimated axial positioning error is approximately 0.05 cm.
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Fig. 8. Fourth order cross correlation coefficient: x=Dj ¼ 5 and r=Dj ¼ 0:5.

Fig. 9. Variation of time delay for maximum cross correlation with separation distance for the second and fourth order cross correlation coefficients:

x=Dj ¼ 5 and r=Dj ¼ 0:5.
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The second and fourth order spatial correlation coefficients are shown in Fig. 10. Also shown is the fourth order spatial
correlation based on Eq. (11). The agreement is very good. It should be noted that the fourth order cross correlation does
have very small negative loops, which are clearly not possible using Eq. (11). However, the magnitude of these loops is
likely to be of the order of accuracy of the measurements and data analysis. Also, at this location, the flatness factor,
T1 ¼ 2:56.

Fisher and Davies [24], Davies [3] and Harper-Bourne [7] used analog filtering to obtain the cross spectral properties. In
the present study, and that by Kerhervé et al. [13], the cross spectral density and its associated properties are obtained
digitally. This reduces some of the issues associated with the analog filter bandwidth and shape. Fig. 11 shows the phase of
the complex cross coherence, defined in Eq. (15), as a function of axial separation distance. The phase for both the second
and fourth order cases are shown as they are very similar. If the variation of the phase of the cross spectral density
(or complex cross coherence) is determined as a function of the separation distance, then the frequency variation of the
phase velocity is given by

ucðStÞ ¼ 2pSt=jdj=dxj: (18)
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Fig. 10. Second and fourth order spatial cross correlations and fourth order cross correlation calculated using Eq. (11): x=Dj ¼ 5 and r=Dj ¼ 0:5.
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Fig. 12 shows the variation of the phase velocity as a function of Strouhal number. Only the results for the fourth order case
are shown. Also, shown is a power law fit to the data. It is given by,

uc=UjðStÞ ¼ 0:062 lnðStÞ þ 0:701: (19)

This is in very good agreement with the curve fit given by Harper-Bourne [7] who found coefficients, 0.056 and 0.667.
Figs. 13 and 14 show the variation of the amplitude of the complex cross coherence as a function of separation distance

for the second and fourth order correlations, respectively. In this case there are some differences. For the second order cross
coherence the decay with separation distance is much slower for Strouhal numbers of in the region of St ¼ 0:2. This is
consistent with the cross correlations shown in Fig. 7 and provides further evidence of a coherent component of the
turbulence in this frequency range. The turbulence axial length scale can be estimated by determining the variation of
coherence amplitude with separation distance. In the present experiments the length scale is set to the 1=e decay point in
the decay of the amplitude of the cross coherence. For the majority of the locations in the jet an exponential function is a
good representation of the cross coherence amplitude variation with separation distance. It should be emphasized that this
definition, introduced by Harper-Bourne [6] is not the traditional integral length scale, such as that used by Kerhervé et al.
[13]. However, it does represent the decay length scale that has been used extensively in modeling the two-point turbulent
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Strouhal number, St = fDj/Uj
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statistics in jets for noise modeling purposes. It avoids the difficulties that might occur if significant negative loops occur in
the cross correlations. These could cause the integral length scale to be zero. The variation of the axial, radial and azimuthal
length scales with Strouhal number is shown in Fig. 15. The length scales are again defined by the 1=e point in the decay of
the cross coherence. The radial and azimuthal length scales were obtained the same manner as the axial length scales,
based on the displacement of the movable probe in the radial and azimuthal directions. The length scale for the second
order correlation is greater than that for the fourth order in all directions. At low Strouhal numbers the length scales are
almost constant, with a slight increase at approximately St ¼ 0:2. At high Strouhal numbers the length scales decay
inversely with Strouhal number. This is consistent with suggestion by Morris and Boluriaan [9] and Self [25]. In the former
case, the length scale was taken to be

L=Dj ¼ ½1� expð�csStL=DjÞ�=ðcsStÞ: (20)

Then, at high Strouhal numbers the length scale is inversely proportional to Strouhal number, whereas at lower Strouhal
numbers the length scale is independent of Strouhal number. The axial length scales, based on the 1=e values for the spatial
correlations, shown in Fig. 10 are 0:295Dj and 0:126Dj for the second and fourth order correlations, respectively. These are
much smaller than the length scales at lower Strouhal numbers shown in Fig. 15. This suggests that the initial decay of the
spatial cross correlation is dominated by the high frequency or shorter wavelength disturbances.
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The measurements at x=Dj ¼ 9, r=Dj ¼ 0:5 show very similar trends to the measurements at x=Dj ¼ 5, r=Dj ¼ 0:5. The
overall convection velocity is measured to be 0:56Uj for the velocity fluctuations and 0:614Uj for the fluctuation in the
square of the velocity fluctuations. The local mean axial velocity equals 0:54Uj. The maximum turbulence intensity at this
axial location occurs slightly inside the jet lip line, where the local mean velocity equals 0:6Uj. The spatial cross correlations
are shown Fig. 16, for both the second and fourth order correlations. The length scales are 0:295Dj and 0:126Dj for the
second and fourth order correlations, respectively. The estimate of the fourth order spatial cross correlation using Eq. (11) is
also shown. The agreement is good. If Eq. (11) were exact, then the ratio of the length scales would be exactly 2. The
variation of the axial length scale with Strouhal number is shown in Fig. 17. The axial length scales at the lower Strouhal
numbers are again almost constant and at high frequencies the length scales decay inversely with Strouhal number. A
comparison with Fig. 15 shows that the length scales have increased at low Strouhal numbers, but are nearly unchanged at
high Strouhal numbers. This suggests that the length scale of the lower Strouhal number disturbances scales with the
physical width of the jet, whereas the small scale structures have a universal behavior, with a local Strouhal number based
on length scale and velocity fluctuation that is independent of location in the jet.

3.2.2. Radial traverses

Before considering the behavior on the jet centerline, the radial variation of properties at x=Dj ¼ 5 will be considered.
Fig. 18 shows the variation of the convection velocity, based on the cross correlation coefficients as a function of radial
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Fig. 16. Spatial cross correlation coefficients: x=Dj ¼ 9 and r=Dj ¼ 0:5.
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location. Inside the lip line, the convection velocity is less than the axial jet velocity, reaching a maximum value of 0:85Uj

on the jet centerline. At the jet lip line, the convection velocity and jet axial velocity are almost equal with a value of 0:6Uj.
Thus, when estimating the convection velocity in noise source modeling, the use of the local axial mean velocity is a good
approximation, as the lip line is the location of maximum velocity fluctuations. Outside the jet lip line, the convection
velocity is higher than the local axial velocity. These results are consistent with earlier measurements: for example by
Davies [3].

Another factor that is important in characterizing the relationship between the second and fourth order statistics is the
flatness factor. The radial variation of the flatness factor at x=Dj ¼ 5 is shown in Fig. 19. Also shown are measurements by
Davies [3] at similar axial locations in a low speed jet. Note that the radial coordinate is given by ðr � Dj=2Þ=x, to agree with
the scale used by Davies. Near the jet lip line the flatness factor is slightly o3, the value for a normally distributed variable.
At locations inside and outside the jet lip line the flatness factor rises to values of approximately 6 on the jet centerline.
Thus, the use of a quasi-normal hypothesis in the region of maximum velocity fluctuations, near the jet lip line, is again
reasonably well justified.

3.2.3. Centerline measurements

From Fig. 4 it can be seen that the centerline mean velocity begins to decay at approximately x=Dj ¼ 5 and the maximum
axial turbulence intensity occurs at approximately x=Dj ¼ 9. In this section, measurements are described on the centerline
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at these axial locations. The second and fourth order axial cross correlation coefficients for the axial velocity are shown in
Figs. 20 and 21, respectively. Measurements were made at additional intermediate axial separations, as well as at larger
axial separations, but these are not shown for clarity. A noticeable feature is that an extrapolation of the peaks in the cross
correlations does not quite reach the expected value of unity at t ¼ 0. Even though efforts were made to minimize the
probe interference, it is thought that the observed anomaly is likely due to such an effect. At x/Dj ¼ 5 on the centerline the
turbulence levels were low and, thus, the wake from the reference had a non-negligible effect on the downstream probe
signal. This reduced the correlation amplitudes, especially at small separation distances. For the lip-line measurements, on
the other hand, the interference was negligible as the turbulence levels were already high. It is also noticed that the
negative loops in the second order cross correlations. These are strongly indicative of an average structure associated with
traveling waves or large scale coherent structures. The corresponding power spectral density is shown in Fig. 22. There is a
strong peak at approximately St ¼ 0:4. This corresponds to the period of the oscillations evident in the cross correlations.

The second and fourth order spatial cross correlations are shown in Fig. 23. The agreement between the estimate of the
fourth order statistics from Eq. (11) and the measurements is good. This is in spite of the fact that the flatness factor is
approximately T1 ¼ 7 over the axial range of the measurements. The variation of the flatness factor with axial location for
different radial locations is shown in Fig. 24. The maximum value of flatness factor occurs at approximately x=Dj ¼ 6. The
value of flatness factor on the centerline then falls rapidly. It equals the value at all other radial locations downstream of
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approximately x=Dj ¼ 9. The values of the flatness factor at other radial locations follow a similar trend. It should be
emphasized that if the fourth order statistics were estimated on the basis of the quasi-normal approximation at this
location in the jet, then significant errors would occur. However the levels of the velocity fluctuations at this location are
relatively low. So the error incurred in making this approximation would not be expected to have a noticeable effect on a
radiated noise prediction.

The variation of the length scales with Strouhal number is shown in Fig. 25. The length scale based on the velocity
fluctuation reaches a maximum at St ¼ 0:4. This is the Strouhal number for the maximum in the power spectral density. It
should be remembered that this length scale is based on the 1=e point for the amplitude of the complex cross coherence
and can’t be used to estimate the wavelength of the periodic structures that are dominating the spatial cross correlation.

For completeness, the axial length scales based on the overall spatial cross correlations, again using the 1=e value, are
0:159Dj and 0:123Dj for the second and fourth order correlations, respectively. The corresponding convection velocities are
0:88Uj and 0:83Uj. The local axial mean velocity is equal to the jet exit velocity.

At this location on the jet centerline the turbulence intensity is changing rapidly, so the absolute value of the cross
correlation decreases much more slowly than the cross correlation coefficient. This is shown in Fig. 26 for the second order
cross correlation. It is clear that scales estimated on the basis of the dimensional cross correlation function would be much
greater than those based on the cross correlation coefficient. However, it is the dimensional cross correlation of the source
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statistics that is needed in the noise models. To minimize this potential problem, the use of a central reference location
with both upstream and downstream separations should be used in the source modeling.

The final location to be considered is on the jet centerline at the location of the maximum axial turbulence intensity:
x=Dj ¼ 9, r=Dj ¼ 0:0. The behavior at this location is very similar to that on the lip line at this axial location. For example the
spatial cross correlation functions are shown in Fig. 27 and the variation of the axial length scales with Strouhal number is
shown in Fig. 28. The axial length scales based on the spatial correlations are 0:341Dj and 0:154Dj for the second and fourth
order correlations, respectively. The corresponding convection velocities are 0:70Uj and 0:65Uj. The local mean axial
velocity at this location is 0:80Uj.
3.3. Cross wire measurements

The measurements have been limited to a single cross wire to avoid interference problems with the second probe. The
primary use of the cross wire measurements here is the estimation of the second and fourth order autocorrelation
magnitudes. In the noise source modeling described by Karabasov et al. [21], these values were obtained from large eddy
simulations. Table 2 presents the values of the fourth order autocorrelations relative to C1111. The values are lower than
those given by Karabasov et al. [21], though there is considerable variation with position in the jet. In fact, perhaps
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coincidentally, the present measurements on the jet lip line give values that are the square of the LES results. The present
results were obtained from both averages of the velocity data as well as from the cross correlation functions. A possible
cause of the discrepancy could be the effect of the very small separation in the cross wire locations. It is readily shown, for
example, that the turbulence intensities and shear stress, as well as the higher order statistics, calculated from the cross
wire depend on the correlation of the velocity fluctuations between the two wires. In the present experiments, the wire
separation was approximately 0.076 cm or 0:015Dj. Based on the two wire measurements, the correlation can vary slightly
over this small distance.
4. Comparison with RANS simulations

Predictions of the average flow development have been made using the NPARC Wind-US 2.0 code. Fig. 29 shows a
comparison of the predicted centerline velocity with the experiments. It is clear that the RANS calculation over-predicts
the length of the potential core and the subsequent rate of decay of the jet centerline velocity. Fig. 30 shows the relative
values on the jet centerline of the turbulent kinetic energy to its maximum compared to the experimental measurements.
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Fig. 27. Spatial cross correlation coefficients: x=Dj ¼ 9 and r=Dj ¼ 0:0.
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Table 2
Values of the fourth order autocorrelation functions relative to C1111 at different locations in the jet.

x=Dj r=Dj C2222 C1212 C1122

1.5 0.5 0.13 0.21 0.06

5.0 0.5 0.16 0.23 0.05

9.0 0.5 0.18 0.23 0.05

5.0 0.0 0.85 0.46 0.16

6.0 0.0 0.42 0.33 0.18

7.0 0.0 0.31 0.30 0.13

8.0 0.0 0.32 0.32 0.09

9.0 0.0 0.31 0.31 0.05
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The predictions give a peak location at x=Dj ¼ 12, whereas the experiments give a peak at x=Dj ¼ 9 . However, the
turbulence model coefficients have been optimized for boundary layer flows and it well known that these values
underpredict the mixing rate: see Thies and Tam [26] and Barber et al. [27]. However, here the aim is to compare the
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measured length scales with those estimated from the RANS simulations. So, the measured values at 5 and 9 diameters are
compared with the simulated values at 7 and 12 diameters. Fig. 31 shows the variation of the length scale based on
the predicted turbulent kinetic energy and viscous dissipation rate at these two axial locations. The length scale in the
simulations is defined by k3=2=e. There are several interesting features of these plots. The maximum predicted length scale
occurs at more than twice the jet radius. The reason for this can be seen in Fig. 32. The turbulent kinetic energy and the
viscous dissipation rate both have maxima near the jet lip line. However, the ratio k3=2=ðeDjÞ peaks much further from the
jet centerline. This is well away from the maximum values of k and e. However, the relevant value of length scale for noise
prediction purposes should be the value close to the lip line. This would be approximately 0:7Dj and 1:2Dj at x=Dj ¼ 7 and
x=Dj ¼ 12, respectively. The measured axial length scales based on the 1=e values, as given in the previous sections, are
much lower than this. For example, the axial length scales based on the second order spatial correlations are 0:295Dj and
0:403Dj at x=Dj ¼ 5 and x=Dj ¼ 9, respectively. These are the measured values on the jet lip line. It is encouraging that the
ratio of the length scales is 1.7 and 1.4 for the simulated and measured scales, respectively. The length scales associated
with the lower Strouhal numbers, shown in Figs. 15 and 17 are much larger than the predicted values for the second order
correlations, being approximately 2:5Dj and 4:0Dj at x=Dj ¼ 5 and x=Dj ¼ 9, respectively. However, the length scales based
on the fourth order correlations are very similar to the simulated values being approximately 1:0Dj and 1:5Dj at x=Dj ¼ 5
and x=Dj ¼ 9, respectively. Though this is probably coincidental, the comparisons in this section could be argued to justify
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the use of RANS simulations for estimating the length scales of both the fine scale turbulence as well as the properties of
the large scale turbulent structures. Clearly, a different coefficient would be required in the two cases and this would only
apply to regions of high turbulence intensity, not to locations inside or near the jet potential core. It could also be argued
that the use of a length scale based purely on the axial distance or the local shear layer width would be adequate. However,
that would not be the case for multi-stream or non-circular jets.

5. Summary and conclusions

This paper has described measurements of the statistical properties of turbulent velocity fluctuations in a subsonic jet.
Both second and fourth order two point statistics of the axial velocity fluctuations and single point statistics of the axial
and radial velocity fluctuations have been measured. The length scales based on the overall spatial correlations as well as
the variation of the length scales with Strouhal number have been determined at different locations in the jet: primarily on
the jet center and lip lines. The characteristics of the statistical properties are very similar in the regions of highest
turbulent velocity fluctuations. This is encouraging for statistical models used in noise source modeling that generally are
assumed to have similar forms at all locations in the jet. The regions where there are distinct differences are close to the
edge of the jet potential core. However, these are not regions of high turbulence intensity. The flatness factor for the axial
velocity fluctuations has also been measured throughout the jet. Again, in regions of high turbulence intensity its value is
quite uniform, being slightly less than the value of three for a normal distribution. This provides some justification for the
use of the quasi-normal hypothesis in noise source modeling. However, it has been shown that the fourth and second order
statistical properties of the axial velocity fluctuations in the jet are related without any assumptions regarding the nature of
the statistical process. This provides justification for noise source models that depend on the fluctuations in the second
order properties rather than the fluctuations themselves. For noise models where the equivalent source terms are already
second order or higher in the fluctuations, such as models based on Lilley’s equation or the linearized Euler equations, this
would simply mean always subtracting the average of the model equations. This has been done, for example, in Goldstein’s
model [20].

Comparisons between RANS simulation of the flow and the measurements have provided some encouragement that the
evaluation of length scales based on the simulations can be used in the scaling of the models. It is probable that a length
scale based on the axial distance or local width of the jet shear layer would work just as well—at least for single stream
axisymmetric jets. However, it has been shown that there is a significant variation in length scale with Strouhal number.
Any noise prediction model that aims at capturing the physics of the noise generation process, rather than simply making
noise predictions, should take this variation into account. Though, it could be argued that the nearly constant length scale
at lower Strouhal numbers is more an indication of the properties of the large scale structures in the turbulence and
shouldn’t play a role in the prediction of noise from fine scale turbulence.

Though hot-wire measurements do suffer from limitations, both in terms of probe interference effects as well as in the
flow velocities that can be considered, the results in the present paper demonstrate that much can be learned from them. It
is hoped that additional measurements with multiple cross wire probes will be conducted in the future in order to extend
the data base described in the present paper.
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